M.Sc. - Mathematics

I Semester End Examination - May 2022

Algebra - I

Course Code: MM101T

Time: 3 hours

QP Code: 11001
Total Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. (a) Define a permutation on a set. Show that every permutation on a finite set is a product of disjoint cycles.
(b) Let ϕ be a homomorphism of G onto \bar{G} with kernel K. Let \bar{N} be a normal subgroup of \bar{G} and $N=\{g \in G / \phi(g) \in \bar{N}\}$ then prove that $\frac{G}{N} \cong \frac{\bar{G}}{\bar{N}}$.
(c) Show that $T: G \rightarrow G$ defined by $T(x)=x^{-1}$ is an automorphism if and only if G is abelian.
2. (a) State and prove Orbit stabilizer theorem.
(b) For a finite group prove that $C_{a}=\frac{O(G)}{O(N(a))}=[G: N(a)]$.
(c) By using generator -relator form of S_{3}, verify the class equation of S_{3}, where S_{3} is a symmetric group.
3. (a) If p is a prime number and $p \mid O(G)$ then prove that G has an element $a \neq e$ of order p.
(b) Show that any two subgroups of order p^{n} are conjugate to each other.
4. (a) Prove that every subgroup of a solvable group is solvable.
(b) Show that a normal subgroup N of G is maximal if and only if the quotient group G / N is simple.
(c) Prove that a group of order 36 is solvable but not simple.
5. (a) Define an integral domain. Prove that every field is an integral domain.
(b) Let R be a commutative ring with unity whose ideals are $\{0\}$ and R only. Prove that R is a field.
(c) Let R and R^{\prime} be rings and ϕ is a homomorphism of R and R^{\prime} with kernel U. Then show that $R^{\prime} \cong R / U$.
6. (a) Let R be an integral domain with ideal P then prove that P is a prime ideal if and only if R / P is an integral domain.
(b) Prove that an ideal of the ring of integers is maximal if and only if it is generated by some prime integer.
(c)Define a prime ideal. Prove that in a commutative ring with unity a maximal ideal is always a prime ideal.
7. (a) Show that every field is a Euclidean ring.
(b) If p is a prime of the form $4 n+1$ then show that $x^{2} \equiv-1(\bmod p)$ has a solution.
(c) State and prove unique factorization theorem.
8. (a) Prove that $F[x]$ is a principal ideal ring where F is a field.
(b) Define a primitive polynomial. Prove that the product of two primitive polynomials is primitive.
(c) Verify that $f(x)=x^{3}+x^{2}-2 x-1 \in Q[x]$ is irreducible polynomial by using Eisenstein criteria.
